首頁 > 論文 > Photonics Research > 8卷 > 4期(pp:457-467)

Optimizing an interleaved p-n junction to reduce energy dissipation in silicon slow-light modulators

  • 摘要
  • 論文信息
  • 參考文獻
  • 被引情況
  • PDF全文
分享:

Abstract

Reducing power dissipation in electro-optic modulators is a key step for widespread application of silicon photonics to optical communication. In this work, we design Mach–Zehnder modulators in the silicon-on-insulator platform, which make use of slow light in a waveguide grating and of a reverse-biased p-n junction with interleaved contacts along the waveguide axis. After optimizing the junction parameters, we discuss the full simulation of the modulator in order to find a proper trade-off among various figures of merit, such as modulation efficiency, insertion loss, cutoff frequency, optical modulation amplitude, and dissipated energy per bit. Comparison with conventional structures (with lateral p-n junction and/or in rib waveguides without slow light) highlights the importance of combining slow light with the interleaved p-n junction, thanks to the increased overlap between the travelling optical wave and the depletion regions. As a surprising result, the modulator performance is improved over an optical bandwidth that is much wider than the slow-light bandwidth.

Newport宣傳-MKS新實驗室計劃
補充資料

DOI:10.1364/PRJ.382620

所屬欄目:Silicon Photonics

基金項目:European Commission10.13039/501100000780; Ministero dell’Istruzione, dell’Università e della Ricerca10.13039/501100003407; Science Foundation Ireland10.13039/501100001602; CINECA-ISCRA;

收稿日期:2019-11-11

錄用日期:2020-01-12

網絡出版日期:2020-01-13

作者單位    點擊查看

Marco Passoni:Department of Physics, University of Pavia, 27100 Pavia, Italy
Dario Gerace:Department of Physics, University of Pavia, 27100 Pavia, Italy
Liam O’Faolain:Centre for Advanced Photonics and Process Analysis, Cork Institute of Technology, Cork, Ireland;Tyndall National Institute, Cork, Ireland
Lucio Claudio Andreani:Department of Physics, University of Pavia, 27100 Pavia, Italy;Institute for Photonics and Nanotechnologies (IFN)-CNR, 20133 Milano, Italy

聯系人作者:Lucio Claudio Andreani(lucio.andreani@unipv.it)

備注:European Commission10.13039/501100000780; Ministero dell’Istruzione, dell’Università e della Ricerca10.13039/501100003407; Science Foundation Ireland10.13039/501100001602; CINECA-ISCRA;

【1】D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich and M. Nedeljkovic. Roadmap on silicon photonics. J. Opt. 18, (2016).

【2】Z. Zhou, R. Chen, X. Li and T. Li. Development trends in silicon photonics for data centers. Opt. Fiber Technol. 44, 13-23(2018).

【3】C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold and I. Tomkos. Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications. Commun. Surveys Tuts. 20, 2758-2783(2018).

【4】G. T. Reed, G. Mashanovich, F. Y. Gardes and D. Thomson. Silicon optical modulators. Nat. Photonics. 4, 518-526(2010).

【5】G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen and S. S. Hsu. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics. 3, 229-245(2014).

【6】R. Soref and B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123-129(1987).

【7】D. MillerD. Miller. Energy consumption in optical modulators for interconnects. Opt. Express. 20, A293-A308(2012).

【8】L. Chrostowski and M. Hochberg. Silicon Photonics Design: From Devices to Systems. : Cambridge University, (2015).

【9】E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi and F. Svelto. Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures. IEEE J. Solid-State Circuits. 51, 3178-3191(2016).

【10】A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí and P. Sanchis. High-contrast 40 Gb/s operation of a 500 μm long silicon carrier-depletion slow wave modulator. Opt. Lett. 37, 3504-3506(2012).

【11】A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti and P. Sanchis. Slow-light-enhanced silicon optical modulators under low-drive-voltage operation. IEEE Photon. J. 4, 1306-1315(2012).

【12】R. Hosseini, L. Mirzoyan and K. Jamshidi. Energy consumption enhancement of reverse-biased silicon-based Mach-Zehnder modulators using corrugated slow light waveguides. IEEE Photon. J. 10, (2018).

【13】A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti and A. Brimont. Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers. 14th International Conference on Group IV Photonics. 149-150(2017).

【14】R. Hosseini, A. Khachaturian, M. C?tuneanu, P. P. Khial, R. Fatemi, A. Hajimiri and K. Jamshidi. Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides. Conference on Lasers and Electro-Optics. : Optical Society of America, (2018).

【15】Y. Hinakura, H. Arai and T. Baba. 64 Gbps Si photonic crystal slow light modulator by electro-optic phase matching. Opt. Express. 27, 14321-14327(2019).

【16】M. Povinelli, S. G. Johnson and J. Joannopoulos. Slow-light, band-edge waveguides for tunable time delays. Opt. Express. 13, 7145-7159(2005).

【17】S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa and T. Usuki. Compact pin-diode-based silicon modulator using side-wall-grating waveguide. IEEE J. Sel. Top. Quantum Electron. 19, 74-84(2013).

【18】C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo and B. B. Bakir. Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI. Proc. SPIE. 9372, (2015).

【19】M. Passoni, D. Gerace, L. O’Faolain and L. C. Andreani. Optimizing band-edge slow light in silicon-on-insulator waveguide gratings. Opt. Express. 26, 8470-8478(2018).

【20】A. Y. Petrov and M. Eich. Zero dispersion at small group velocities in photonic crystal waveguides. Appl. Phys. Lett. 85, 4866-4868(2004).

【21】T. F. KraussT. F. Krauss. Why do we need slow light?. Nat. Photonics. 2, 448-450(2008).

【22】T. BabaT. Baba. Slow light in photonic crystals. Nat. Photonics. 2, 465-473(2008).

【23】J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias and T. F. Krauss. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express. 16, 6227-6232(2008).

【24】L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovi?, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne and T. F. Krauss. Loss engineered slow light waveguides. Opt. Express. 18, 27627-27638(2010).

【25】S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni and T. F. Krauss. Dispersion engineered slow light in photonic crystals: a comparison. J. Opt. 12, (2010).

【26】R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini and X. Zhang. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Express. 18, 16309-16319(2010).

【27】A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss and L. Kuipers. Ultracompact (3 μm) silicon slow-light optical modulator. Sci. Rep. 3, (2013).

【28】T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto and T. Watanabe. Slow-light Mach-Zehnder modulators based on Si photonic crystals. Sci. Technol. Adv. Mater. 15, (2014).

【29】T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura and T. Baba. Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light. J. Lightwave Technol. 33, 3034-3040(2015).

【30】Z.-Y. Li, D.-X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben and J.-Z. Yu. Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions. Opt. Express. 17, 15947-15958(2009).

【31】H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu and J. Yu. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Opt. Express. 20, 15093-15099(2012).

【32】H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets and W. Bogaerts. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. Opt. Express. 20, 12926-12938(2012).

【33】D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. L. Roux, D. Bouville, S. Menezo, F. Boeuf and L. Vivien. Low loss 40 Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers. Opt. Express. 21, 22471-22475(2013).

【34】D. Pérez-Galacho, D. Marris-Morini, R. Stoffer, E. Cassan, C. Baudot, T. Korthorst, F. Boeuf and L. Vivien. Simplified modeling and optimization of silicon modulators based on free-carrier plasma dispersion effect. Opt. Express. 24, 26332-26337(2016).

【35】D. Perez-Galacho, C. Baudot, T. Hirtzlin, S. Messaoudène, N. Vulliet, P. Crozat, F. Boeuf, L. Vivien and D. Marris-Morini. Low voltage 25 Gbps silicon Mach-Zehnder modulator in the O-band. Opt. Express. 25, 11217-11222(2017).

【36】X. Li, F. Yang, F. Zhong, Q. Deng, J. Michel and Z. Zhou. Single-drive high-speed lumped depletion-type modulators toward 10 fJ/bit energy consumption. Photon. Res. 5, 134-142(2017).

【37】Y. Terada, H. Ito, H. Nguyen and T. Baba. Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction. Front. Phys. 2, (2014).

【38】Y. Hinakura, Y. Terada, T. Tamura and T. Baba. Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process. Photonics. 3, (2016).

【39】K. Hojo, Y. Terada, N. Yazawa, T. Watanabe and T. Baba. Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters. IEEE Photon. Technol. Lett. 28, 1438-1441(2016).

【40】Y. Terada, T. Tatebe, Y. Hinakura and T. Baba. Si photonic crystal slow-light modulators with periodic p-n junctions. J. Lightwave Technol. 35, 1684-1692(2017).

【41】Y. Terada, K. Kondo, R. Abe and T. Baba. Full C-band Si photonic crystal waveguide modulator. Opt. Lett. 42, 5110-5112(2017).

【42】A. Al-Saadi, H. J. Eichler and S. Meister. High speed silicon electro-optic modulator with p-i-n comb diode. Opt. Quantum Electron. 44, 125-131(2012).

【43】S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon and H. J. Eichler. Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators. Opt. Express. 21, 16210-16221(2013).

【44】S. Kupijai, H. Rhee, A. Al-Saadi, M. Henniges, D. Bronzi, D. Selicke, C. Theiss, S. Otte, H. J. Eichler, U. Woggon, D. Stolarek, H. H. Richter, L. Zimmermann, B. Tillack and S. Meister. 25 Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator. J. Lightwave Technol. 34, 2920-2923(2016).

【45】M. Passoni, D. Gerace, L. O’Faolain and L. C. Andreani. Slow light with interleaved p-n junction to enhance performance of integrated Mach-Zehnder silicon modulators. Nanophotonics. 8, 1485-1494(2019).

【46】F. Boeuf, S. Crémer, E. Temporiti, M. Ferè, M. Shaw, C. Baudot, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, H. Petiton, P. Le Maitre, M. Traldi and L. Maggi. Silicon photonics R&D and manufacturing on 300-mm wafer platform. J. Lightwave Technol. 34, 286-295(2016).

【47】M. Pantouvaki, S. A. Srinivasan, Y. Ban, P. De Heyn, P. Verheyen, G. Lepage, H. Chen, J. De Coster, N. Golshani, S. Balakrishnan, P. Absil and J. Van Campenhout. Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform. J. Lightwave Technol. 35, 631-638(2017).

【48】C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao and X. Zhang. Flat band slow light with high coupling efficiency in one-dimensional grating waveguides. IEEE Photon. Technol. Lett. 24, 7-9(2012).

【49】P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud and M.-J. Picard. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency. Opt. Express. 23, 22553-22563(2015).

【50】J. Hugonin, P. Lalanne, I. D. Villar and I. Matias. Fourier modal methods for modeling optical dielectric waveguides. Opt. Quantum Electron. 37, 107-119(2005).

【51】W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle and L. A. Rusch. Silicon photonic modulators for PAM transmissions. J. Opt. 20, (2018).

【52】S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos and Y. Fink. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E. 65, (2002).

【53】D. Gill, C. Xiong, J. Rosenberg, P. Pepeljugoski, J. Orcutt and W. Green. Modulator figure of merit for short reach data links. Opt. Express. 25, 24326-24339(2017).

【54】P. Jean, A. Gervais, S. LaRochelle and W. Shi. Slow light in subwavelength grating waveguides. IEEE J. Sel. Top. Quantum Electron. 26, (2020).

【55】S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout and P. Absil. 193 nm immersion lithography for high-performance silicon photonic circuits. Proc. SPIE. 9052, (2014).

【56】K. Ashida, M. Okano, T. Yasuda, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada and Y. Takahashi. Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process. J. Lightwave Technol. 36, 4774-4782(2018).

引用該論文

Marco Passoni, Dario Gerace, Liam O’Faolain, and Lucio Claudio Andreani, "Optimizing an interleaved p-n junction to reduce energy dissipation in silicon slow-light modulators," Photonics Research 8(4), 457-467 (2020)

您的瀏覽器不支持PDF插件,請使用最新的(Chrome/Fire Fox等)瀏覽器.或者您還可以點擊此處下載該論文PDF

TLC官网 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>